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Received 4 March 1991, in final form 15 April 1991 

Abstract. The majority of lattice gaser have, apart from the physical conscxved 
quantitie. of particle number, momentum and energy, spurious ones, usually stag- 
gered in space and time. At the level of linear excitations these ataggerrd modes m a y  
be purely diffusive or damped propagating waves. In the eight- and ninebit model 
on the square lattice w e  find a large number of new spurious modes and we derive 
GreewKubo relations for the dilfusivities and damping constants and calcdale them 
in Boltzmann approximation. 

1. Introduction 

Recently, Frisch et a1 [l] have proposed a new technique to simulate the incompressible 
Navier-Stokes equations in two dimensions, the lattice gas cellular auiomata (LGCA).  
This technique has been widely applied to numerical simulation both in two- and 
three-dimensional fluids [Z]. The idea of the method is simple: it is a collection of 
‘molecules’ with a finite number of velocities which can be at  the nodes of a regular 
lattice at  integer times. The collisions occur only at  the sites of the lattice and 
conserve mass, linear momentum and possibly energy. Based on the idea that the 
macroscopic behaviour is only dominated by the conservation laws, LGCAS could have 
the same hydrodynamics as real fluids. However, the majority of models have, apart 
from the usual conserved quantities, new spurious ones. The physical set is conserved 
on account of properly chosen collision rules, but the unphysical or spurious set is an 
artifact of the discrete structure of space and time in which the cellular automaton is 
defined. The spurious conservation laws have no physical analogue in the continuum 

The best known spurious invariant is the total staggered momentum, discovered 
by Kadanoff et a/ [3] in the FHP-model on the triangular lattice. Similar staggered 
momentum invariants occur in the eight-bits and ninebit LGCAS [4-61, defined on a 
square lattice, and in the FCHC model [5], defined on the four-dimensional FC hyper- 
cubic lattice. Also staggered number invariants are known to occur in LGCAs with 
random static scatterers and cubic symmetry [7, 8) and in several one-dimensional 
models [9]. We will also discuss invariants that are only staggered in space, but not 
in time. They are related to the geometric and checker board invariants discussed by 
d’Humikres el al [lo]. 

C a s e .  

t Permanent address: Facultad Ciencias Fisicar. Univewidad Complutense, 28040 Madrid. Spain. 
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The motivation for this investigation is that these staggered invariants give rise to 
new modes that are slowly varying on hydrodynamic space and time scales, and appear 
t o  be purely diffusive in all cases studied so far. The evolution equations for these 
modes have to he added to the Navier-Stokes equations, including the proper non- 
linear couplings between those and the physical ones. In general, the existence of these 
new modes will change the macroscopic behaviour of the CA-fluid. For instance, tlie 
non-linear Euler equation for the FHP fluid will not only contain the usual convective 
term U .  VU, %here U(?,  1) is ?he macroscnpic f!ow ve!oci?y, h? .!so EKalogo-s ? e r ~ . s  
with pu replaced by the averaged staggered momentum density [ l l ,  E]. 

Furthermore an understanding of the spurious modes is of great importance to  
properly analyse any type of simulations of LGCA-fluids, where non-linear hydrody- 
namic effects are present, and to relate the results eventually to the behaviour in 
actual fluid dynamics. Therefore one needs to understand the complete set of non- 
!inear maerose~pic equationsj incliuding the spr!rious onesi and a!! new transport c.0- 
eficients related to this spurious thermodynamics and hydrodynamic variables. Once 
the spurious slow variables have been identified and new transport coefficients have 
been computed from linear response theory-which is essentially the program of this 
paper-the corresponding non-linear terms in the full set of fluid dynamic equations 
can be constructed for general LGCAs along the lines of [3, 8, 111. 

In order to minimize the  influence of spurious invariants in t,he fluid dynamic 
equations, it is advantageous [3] to prepare constraint equilibrium or non-equilibrium 
ensembles in which all total staggered momentum vanishes exactly. 

The modified structure of the non-linear terms in the fluid dynamic equations 
directly modifies the mode coupling theories, and determines which pairs ofslow modes 
are contributing to the long time behaviour of correlation functions (121. 

The novel feature of this paper is the discovery of propagating staggered ~~ modes in  
the well-studied eight-bit square lattice model [4-61. The staggered sound waves are 
soft modes with a dispersion relation like ordinary sound waves, but with a different 
propagation velocity. I t  should be stressed that the eight-bit square lattice model is 
not a serious candidate for large-scale simulations of two-dimensional flow problems. 
However, it can be viewed as a LGCA with a temperature, which is not the case for 
any of the models discussed previously. The systematic analysis of the eight-bit. model 
should therefore be considered mostly as a prototype, that is applicable to any LGCAs. 

In order to analyse the linear excitations of a CA fluid out of equilibrium, it is 
necessary to identify the complete set of conservation laws. By construction, the col- 
lision rules in LCCAS that qualify as fluids, conserve number, momentum and possibly 
energy. In terms of the occupation numbers n(c,T., t )  these conserved quantities are: 

I C  

with p(r,t), g ( r , t )  and e ( r , t j  the associated conserved densities. Here n(c,r,tj = 1 
if the site r and the velocity channel c is occupied at t,ime t ,  and 0 otherwise. 

In addition most LGCAS have spurious invariants. In the dynamic and geomet- 
ric staggered invariants, that  will be considered later, the discrete lattice structure 
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is essential. However, one can easily construct LGCAs with over-simplified collision 
rules, that have, in addition to the physical ones of number, momentum and energy, 
unphysical collisional invariants like the HPP model [13, 141, that are neither staggered 
in space nor time. 

Unfortunately, no methods seem to exist to systematically find all conserved quan- 
tities, including the spurious ones (see however section 6). In the LGCAs considered in 
the literature, there exists a great variety of spurious conservation laws [lo], such as 
staggered, geometric or checker board invariants. In this paper we focus on invariants 
and corresponding modes, that  are staggered in space and time (dynamic staggered 
modes), or that  are only staggered in space (geometric staggered modes). The corre- 
sponding densities may give rise to purely diffusive modes or to damped propagating 
ones. Possible spurious modes, which are neither staggered in space nor in time, can 
be treated in exactly the same manner as the physical densities in equation (1 .1) .  
They will not be considered in this paper. 

The typical form of the most common spurious invariant, the total staggered mo- 
mentum, is [3]: 

where the integer 0 . T being even or odd characterizes a division of the total lattice 
into two specific sublattices. The set of allowed values of 0 depends on the model 
under consideration. There are three of these staggered momenta in the FHP models, 
two in the eight-bit and nine-bit square lattice model and twelve in the FCHC model. 
However there may be many more staggered invariants, as we shall illustrate for the 
eight-bit square lattice model. 

At the level of linear excitations, these staggered modes do not couple to the 
hydrodynamic modes, nor to modes characterized by different sublattice divisions. If 
for a given sublattice characterization 0, only staggered modes exist with the sanae 
vectorial character, then these modes are purely diffusive. This situation occurs in 
CA-fluids, such as the FHP model, the nine-bit model and the FCHC-model, or in CA 
Lorentz gases [7, 15). For these models, the staggered momentum density ge(k,t) 
satisfies the following equation after Fourier transformation, 

atgO(k,t)  = -k2A,(i)gs(k t )  (1.3) 
.. 

with an anisotropic diffusivity A,(k),  where k is a unit vector parallel to k. Green- 
Kubo relations for the staggered momentum diffusivities [l l ,  161 can be put into the 
form [17] A,(;) = ( k .  S)2E11 + (i. & ) 2 E L  with 

- ^  

A - 
where c - B .  c,  cL = 8, . c,  and r(6,l)h: is the kinetic propagator. Its precise 
definition will be given in section 3 and an explicit expression for y in the Boltzniann 
approximation is calculated in section 5. However, if there exist for a given sublattice 

I1 - 
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division two or more staggered invariant,s with a different vectorial character, then the 
staggered modes may become propagating with a propagation speed and a damping 
constant. This occurs in the eight-bit model [4]. 

The paper is organized as follows: in section 2 we present the model and discuss its 
conserved quantities (physical and staggered). In section 3 the diffusivities for diffusive 
staggered and non-staggered modes are given. In section 4 the propagating staggered 
modes appear. Section 5 is devoted to the calculation of diffusivities and damping 
constants in the Boltzmann approximation. Fina!!y, we inc!ude some comments in 
section 6. 

R Brito an,d M H Ernsl 

2. Square lattice models 

We focus mainly on the eight-bit model, introduced by Chopard and Droz (41. I t  
consists of a superposition of two interacting HPP lattice gases. There are eight ve- 
locity states: four ‘slow’ ones with velocities ( i 1 , O )  and ( 0 , i l )  and four ‘fast’ ones: 
( i1 , i l ) .  Collisions between like velocities and unlike velocities are allowed and cho- 
sen in such a way that particle number N ,  momentum P and energy H,  are conserved, 
as illustrated in figure 1. An equivalent set of physical conservation laws is the total 
momentum, the number of slow particles N ,  and the number of fast particles N ,  with 
N = Ns + Nf and H = i N s  + Nf. In the first interpretation the model is a thermal 
lattice gas for a single component system, with a temperature and heat conductivity. 
In the second interpretation the model is an athermal lattice gas (without tempera- 
ture) of a binary mizture with a diffusion coeficient D. We shall be using the binary 
mixture picture. A proper linear combination of pr(r, t) and p.(r,l) constitutes the 
diffusion mode. 

Figure 1. Collision rules for eight- and nine-bit models. Symmetry related collisions 
(successive rotations of n/Z and reflections on I and y) a re  also allowed. The 0 in 
(b) represents a rest partide. Collision rule (h) is absent in the eight-bit model. 

In addition to the physical conservation laws there exist in this model unpliysi- 
cal ones. Consider first a sublattice division characterized by the vector 8 = (1 , l ) .  
For the (+) or (-) sublattice the quantity 8 * r = rz + ry is respectively an even 
or odd integer, There are in fact two different types of invariants connected with 
this sublattice division: geometric and dynamic staggered invariants. Examples of 
geometric invariants are the number of fast particles on the (+)- and (-)-sublattice, 
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where Nf+ and Nr- are separately conserved. Their sum, N - N,, + N , - ,  repre- 
sents the physically relevant conservation law; their difference N,, = N,+ - N,- = 
E, ~ l c l = l ( - ) e + n ( c , r ,  t)  is a geometric invariant. This invariant is only staggered 
in space, but not in time. Examples of dynamic staggered invariants are the number 
of slow particles on the even and odd sublattice, N,,  and Ns- respectively. They 
satisfy the relations N,+(t) = N,-(t + 1) and N , - ( t )  = N,+(t + 1). Consequently 
No, E (-)'[N,+(t) - N,-(t)] = E, CI,"l(-)'+e''n(c,r,t) is a constant of the mo- 
tion (note that the c-sum is restricted to slow particles). This is the only conserved 
quantity associated with the vector 0 = ( 1 , l )  that is staggered in both space and 
time. We follow the convention that a subscript 0 denotes dynamic staggered modes, 
whereas a subscript 6 in combination with a tilde denotes geometric staggered modes. 

To summarize, associated with the sublattice division 0 = (1, l), there exists 
a geometric staggered invariant N,, and a dynamic staggered invariant N,.. The 
corresponding spurious densities are: 

Far(r,t) = ( - ) e . r C a f ( c ) n ( c , r , t )  pa . ( r , t )  = (-)'+"'Ca,(c)n(c,r,t) (2.1) 

where the collisional invariants are 

f I  

- 

a u k )  = Iar(c)3a.(c)) = VC&> 6d}. ( 2 . 2 )  

Both densities are staggered in space. The geometric one becomes constant in time 
in the long wavelength limit, and is caused by the discrete lattice structure only. The 
dynamic one represents in the long wavelength limit an undamped oscillation, (-l)', 
and is caused by the combined effects of collision rules and discrete lattice structure. 

Next we consider two different sublattice divisions, characterized by 0 = (1,O) or 
0 = (0 , l ) .  Here not only the total staggered &momenta, defined in equation (1.2) 
are constants of the motion, but also the staggered number of fast particles in either 
of these &directions, defined as N,, = C,,(-)'+e''ar(c)n(c, T ,  t ) .  

Associated with each of the two &vectors, (1,O) and (0, l), there exist the locally 
conserved densities being both staggered in space and time, 

Psr(T2 t)  = (-) '+e. 'Ca,(c)n.(c,T,t)  g,(.,t) = (-)'+e- E(;. C)rL(C,T,t). (2.3) 

As we have ascalar- and vector-type conserved density per @-vector, the corresponding 
elements of the Euler matrix may be non-vanishing, giving propagating modes with 
an anisotropic speed of sound, as we shall see later. 

3. Diffusive modes 

9.1. Geometric staggered modes 

For the sublattice division with 0 = (1,l)  there are two modes (2.1) ofscalar character. 
They behave purely diffusive according to the general method of [16]. We consider 
first the geometric mode, given by 
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where n(c, k , t )  is the Fourier transform of the fluctuation out of equilibrium in the 
occupation number, defined as 6 n ( c , r , t )  = n(c,r,t) - (n(c ,r)) .  

Once we have identified the slow mode &(k, t )  it is straightforward to apply the 
method of [16] and show that & , ( k , t )  satisfies a diffusion equation of the form (1.3) 
with A,(;) replaced by a diffusivity De(L).  The corresponding Green-Kubo formula 
is given by 

R Brito a7id M H Ernst 

- ^  

provided the limits exist (161. The inner product is defined in terms of an equilibrium 
average (. . .) over a grand ensemble with a phase space density exp(b. A). Here A = 
{N8 ,Nf ,P , so f ,  NearNefrPe} includes I181 the normal conserved quantities and all 
staggered invariants, and b = {us, v,, . . .} is the set of associated Lagrange multipliers, 
where us and v, are the chemical potentials of slow and fast particles. The inner 
product between Fourier components is defined as 

(AIB) I V - ' ( A ( k ) B * ( k ) )  (3.3) 

where V is the number of sites in the lattice. The susceptibility ,yr is 

(3.4) 

(3.5) 

In models without energy conservation f ( c )  = / = p / b  is the reduced density (0 < f < 
1) with b the number of velocity states per site. If energy is non-trivially conserved, 
f(c\ = I1 +nwn(-u+ iRc2)!-'  is the F ~ r m i  distribut,ion in a system where the average 
invariants (P) = (Ne. )  = (Nor) = (Ps) = (Nef) = 0. In our picture of the model 
as a binary mixture, f ( c )  = [I + exp(v,a,(c) + vfaf(c))]-', or /(I) f, = pJ4 and 
f(4) 3 fi = p,/4, where p,  and pf are the concentration of slow and fast particles 
respectively. The staggered current of fast particles in equation (3.2) is 

I 
, \-, ,- . ---r, 

The basic quantity to  calculate any  Green-Kubo expressions is the kinetic propa- 
gator: 

(3.7) 
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where the labels c ,  c' denote the b-different velocity states. 
In order to have a more convenient notation we introduce the b x b matrix 

I 

-/cYcc,(fl,a)- lim lim{rcc,(k+ d , z + a n i )  - +acc,}. 
1-0  k-0 

The effect of the factors (-)'" in the geometric staggered modes (2.1) and 
in the dynamic staggered modes (2.1) and (2.3) is a shift in the arguments k and z 
by an amount n e  and axi ,  where a = 0 for geometric and a = 1 for dynamic modes. 
Using a matrix notation, the diffusivity (3.2) can be written as, 

(3.9) 

where jr(c) = ( 6 .  e)&,& is considered a b-vector with components jr(e) and iecc, a.j a 
diagonal matrix. These results are summarized in table 1, together with the explicit 
values of D, in the Boltzmann approxima,tion. 

Table 1. Summary of transport coefficients in the eight-bit model. The 8-vectors 
characterizes the sublalice divisions with a = 1 for an oscillating dynamic mode and 
CI = 0 for a geometric mode. The current j ( c )  enters in the Greez-Kubo formulas 
j y ( 0 ,  a ) s j  forthe transporlcoefficients. Somesymbols usedare: xg = 2s' t 4 k 2 , ~ 1  = 
k . e, et = k l  . E .  CII = 0 ,  c and CI = 0 1  . C. 
- - - - 

Diffusivity 
Mode 8. Propagation 

speed Current j ( c )  Boltzmam value 

Diffusion 
(1. a, 

X. 2Xf 

Sound waves 

P f ~ C O g l  

(3.10) 
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Here Tup is asecond-rank tensor which depends on 6 only through the factor (-l)e'r = 
( - 1 p t r v .  So it is invariant under all symmetry operations of the cubic group, i.e. 
sign changes of I or y and permutations-z and y. However, a second-rank tensor with 
this symmetry is isotropic [19], Tup = DOSmp, giving an isotropy diffusion coefficient. 
Similar arguments can be applied to  show that D,(F) in the next subsection is also 
isotropic. 

3.2. Dynamic staggered modes 

For the same sublattice division with 0 = ( 1 , l )  the mode p,,(k,t) exists. It is of 
dynamic origin and staggered in space and time. This mode is also purely diffusive 
and the method of [16] yields a Green-Kubo relation like equation (3.2) with J, , (k , t )  
in equation (3.6); replaced by 

R Brilo and M H Ernsl 

I t  can be reduced to  a form similar t o  equation (3.9), i.e. 

with a susceptibility given by 

x, = (Ps,IPs.) = (P,lP,) = C . . ( C ) . ( C )  

- A 

and D s ( k )  = D ,  is independent of k (see previous subsection) 

3.3. Difasion mode 

(3.11) 

(3.12) 

(3.13) 

For later comparison, we also consider the diffusion mode, which is a linear combina- 
tion of p r ( k , t )  and p, (k , t ) .  T h e  general theory of fluctuations in fluids [20] suggest 
the linear combinations, 

p(k,l) = C f c ' n ( c , k , t )  = f p , ( k , t ) + ~ r ( k , t )  
E 

(3.14) 

Here p [ k ;  t !  is the pressure fluctuation, which determines the standard sound modes 
(see section 4.2) and u(k,l) is the concentration fluctuation, which is chosen to be 
independent of (or orthogonal to) the pressure fluctuation, i.e. (p(k) lu(k))  = 0. The 
concentration fluctuation satisfies a diffusion equation of the form (1.3) with A e ( i )  
replaced by D .  A more systematic way to  construct the proper linear combinations is 
given in section 4.1.  
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According to the method of [I61 D is given by the Green-Kubo formula, 

m - i ( J [ J ) }  = -jr(O,O)nj 1 .  
X 

where the currents are defined by 

J ( t )  = E j ( c ) n ( c , k , t )  

and the susceptibility is: 

1 1 (PIP) 
X = (.I.) = - + - = -. 

X. 4Xt X.Xr 
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(3.15) 

(3.16) 

(3.17) 

The value of D in Boltzmann approximation is given in table 1 

4. Propagating modes 

4.1. Propagating staggered modes 

The novelty of the eight-bit model is that it has propagating staggered modes, being 
linear combinations of the vectorial staggered momentum density ge(k, t )  and the 
scalar staggered number density per( lc ,  t )  for sublattices, characterized by 0 = ( 0 , l )  

These staggered densities satisfy microscopic local conservation laws. Since we 
are interested here in large spatial and temporal scales we write only their continuous 
version, i.e. 

or (1,O). 

atpet(k,t)  = -ikJ&,t) 
(4.1) 

atgs(k,t)  = -ikJng(k,t) 

and diagonalize them to U ( k )  in order to determine the proper linear combination of 
g, and per. The currents J,, and JRt are defined through (3.11) with j,(c) replaced by 
j,(c) = (k. c)(B. c) and j,(c) = (k. c)at(c) respectively. Following the method of [18] 
the currents can be split into a local equilibrium current, PJ,, and a dissipative current 
7, = (1 - P ) J , ,  where P is a projection operator onto the hydrodynamic subspace, 
spanned by the complete set A of normal and staggered slow modes, as discussed in 
later equation (3.2).  We first consider only the local equilibrium or Euler part of the 
conservation law (4.1), which is found by projecting the current on the complete set 
A of slow modes and yields for the present case in the long wavelength limit, 

- -  - 

(4.2) 
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where 

R Brit0 and M H Ernst 

c.' = XrIX, 
x, = (gelse) = ixs + Xf 

The solution to (4.2) represents two propagating staggered waves (U = +), 

(4.3) 

d$(k , t )  =Pef(k,t)+Uc*g,(k,t)  = ( - ) ' ~ [ u r ( c ) + . c . ( 8 ^ . c ) l n ( c , k + a B , t )  (4.4) 

^ ^ ^  

with a speed of propagation c,(k) = Ik .Blc, that depends on the direction of propaga- 
tion i. For the staggered waves the speed of propagation is maximal in the direction of 
the vector 8 ,  and vanishes in the direction perpendicular to 8 .  Having established the 
proper linear combinations of staggered modes $; that diagonalize the Euler equa- 
tions (4.2), we simply follow the method of [I61 to obtain the complete time dependence 
of the staggered excitations, including the damping, i.e. 

$,"(k , t )  = $i(k,O)exp[-wi(k)t] 
- (4.5) 

After some algebra the Green-Kubo formula for the damping constant is found to be 

w ; ( k )  = iu (k .  qC, + t2n;(Z). 

(4.6) 
^ 

where the staggered subtracted current J ;  = (1 - P ) J ;  is given by an expression 
similar to (3.11) with j ,  replaced by 

^ ^ ^ ^  ^ 

ji(C) = [k  * c - uc,(k ' S)][u,(c) + uc,(B. c)]. (4.7) - 
By further exploiting the symmetries the anisotropic damping constant A ; ( k )  can be 
written" 

^ ^  ^ ^  Ai(;) = ( k  . 8)*Al1 + ( k  . C ~ , ) ~ A ,  (4.8) 
where each A is the sum of an even part A, and an odd part A,, with 

(4.9) 

Recall that the shorthands cII = 8̂ . c and et = . c are being used. These relations 
are the Green-Kubo formulas for the damping constant of the propagating staggered 
modes in models supporting both staggered number as well as momentum invariants. 
Their values in Boltzmann approximation are listed in table 1. Propagating staggered 
modes do not exist in the nine-bit version [21] of the model. 
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4.2. Sound waves 

I t  is interesting to compare the propagating staggered waves with the usual sound 
waves. The latter are linear combinations of pressure fluctuations p(k, t )  and longitu- 
dinal momentum fluctuations gI(k, t).  For the eight- and nine-bit square lattice model 
the usual sound modes ( U  = +) are 

V ( k , t )  = P(k,  1 )  + q I g r ( k , t ) .  (4.10) 

where 

g1(k,t) = C ( i . c ) n ( c , k , t ) .  (4.11) 

Following the steps (4.1)-(4.9) one can also derive expressions for the speed of sound 
co [21] and for the damping constant. In this case, the speed of propagation co is given 
by cg = x,/x, with x, = ( p l p )  = $2, c44c) .  The damping constant of these modes 
is given by 

where the current Ĵ . = (1 - P)J“ is 

(4.12) 

(4.13) 

The complete time dependence of these modes is (compare with equation (4.5)): 

(4.14) 

In contrast with the staggered speed of propagation, the speed of sound is independent 
of the direction of propagation. However, co and c, are not independent. Inspection 
shows that the relation cz = 2 4  - 1 holds. 

The sound damping constant P(;) depends on the  direction of propagation. Fol- 
lowing (4.9) we split P’ = re + r, into an even and odd part with 

(4.15) 
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where cI = k . e. In the last equality the relation, 

R Brito aad M H Ernst 

X 
XrX. 

j ( c )  = - - q c 2  - 2c3c, (4 .16)  

has been used as can be deduced from (3.16) and (3.17). The even part involves the 
non-isotropic viscosity tensor [18] 

Greek subscripts label Cartesian components a , @ , y , 6 , .  . . = (z,y) and sapT6 (41 equals 1 
eiliia! and vanishes oi:lerwise, The fourth raiik viscosi~y tensor with 

square symmetry h a s  in general three independent viscosity coefficients. However, as 
(4.17) is traceless in the indices (up) and (y6), the bulk viscosity vanishes. The two 
remaining viscosities are given by the Green-Kubo relations 

ifa!! jiibji+ts 

With the help of (4.15) and (4.17) the even part of the sound damping constant can 
then be expressed in the viscosity coefficients, 

- 
r,(k) = full l l  = fvsin2(2g) + $v'c0s2(24) (4.19) 

where the-subscript I denotes a longitudinal component, parallel to  the propaga_tion 
direction k = (cosg,sin$). In isotropic LGCAs both viscosities are equal and r,(k) = 
fu is isotropic. 

5. B o l t z m a n n  approximation 

5.1. h'ineiic propagator 

In this section we will explicitly calculate the kinetic propagator +/(€',a) in the Boltz- 
mann approximation. The time evolution of the occupation numbers n(c, r .  t )  is given 
by: 

n(c,T + c , i +  I )  = n(c,v,t) + I(+) (5 .1 )  

where the first term of the left hand side of t,his equation is the free simaming term and 
I(+) represents the collision term. In general, I(+) is non-linear in the occupation 
nomhewj i.e.? in g h-bj! EO&!, I (c!")  con!,a.ins a! most, h ",si mc.h referring t,n a 
different velocity channel. By iterating equation (5.1) t times, one obtains the exact 
series for n(c, r, t )  expressed as a polynomial of degree b' in the occupation numbers 
n(c, r', 0). In the approximation of uncorrelated collisions, the so-called Boltzmanii 
approximation, the recollisions between particles are neglected and one can resum the 
series as a t th  power of a single step .evolut,ion. 
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In practice, this calculation is carried out by introducing the collision operators 
R by Taylor expanding n ( c , r , t )  around f(c) = (n (c , r , t ) )  and using the relation 
Z ( f )  = 0. This yields 

Z(cln) = x R C , , 6 n ( c ' , s , t )  + xR,, , , , ,sn(c' ,r,t)6n(c",r,t)  + . . .  (5.2) 
c) e'c" 

If correlated collisions are neglected, the third and higher order R-operators do not 
contribute to the average occurring in the kinetic propagator (3.7). So, we neglect all 
non-linear terms in (5 .2 )  and the time evolution equation for the occupation number 
becomes in the Boltzmann approximation, 

6n(c , r+c , t+ l )  = 6 n ( c , r , t ) + ~ R c C , 6 n ( c ' , r , t ) .  (5.3) 
C' 

After Fourier-Laplace transformation we obtain the solution 

where n(c, k, t )  and E(c, k, z )  are the Fourier and Fourier-Laplace transform of 
s n ( c , r ,  t ) .  When inserting equation (5.4) into equation (3.7) we obtain with the 
help of equation (3.5): 

By combining equations (5.5) into (3.8) the final form of the kinetic propagator ~ ( 8 ,  a) 
in Boltzmann approximation follows 

where the sublattice matrix A is diagonal 

A , , , ( ~ , u )  = 6,,,[1 - (-l)e'cta] (U = 0, I). (5.7) 

In deriving equation (5.6) we have used that the factor exp[inO. c' + i m ] ,  occurring 
to the right of equation (5.5), can he replaced by unity. The reason is that this factor 
occurs in all expressions of interest (1.4), (3.9), (3.12), (3.15) and (4.9) in combination 
with a current j ( c )  = ( k  . c)a(c), that contains the proper collisional invariant a ( c ) .  
Therefore the relation, 

eiro+ine.c Q(c) = Q(c) (5.8) 

derived in (A.5) of appendix A,  allows us to replace this factor by unity. In fact one 
does not really need appendix A to explicitly verify this relation. For the staggered 
invariants of the eight-bit model a(c) = cII and 6 4  with 8 = (0 ,1) , (1 ,0)  and U = 1 
and a(.) = 6,1 for 8 = ( 1 , l )  with (I = 1 ,  and for a(c)  = SCf i  for 8 = (1 , l )  with 
(I = 0. 
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5.2. Standard transport coeficients 

The diffusion coefficient D in (3.15) and the viscosities U and U' in (4.18) belong to this 
class. In Boltzmann approximation they have the general form, L = -j(R-' + $ ) ~ j .  
It can be evaluated by combining the methods of [17, 211. The transport coefficients 
can be calculated most conveniently in terms of eigenfunctions and eigenvalues of the 
8 x 8 collision matrix 0, i.e. 

R Brito and M H Ernst 

OK$* = -W,,K$,,. (5.9) 

They are orthogonal with respect to a weighted inner product 

(5.10) 

where K ( C )  is a weight factor defined i n  (3.5). For an  explicit determination of the 
eigenualues it is more convenient to consider a slightly different eigenvalue problem, 

RKU, = - A  n n  U (5.11) 

where the matrix is symmetric as can be verified by explicit construction of R from 
the collision rules i n  figure 1. Now eigenfunctions are orthogonal with respect to the 
inner product 

The four zero-eigenfunctions (U, = A, = 0) are the collisional invariants, 

+i(c) = ui(c) = 6,i 

$JC) = UJC) = cy 

$z(c) = u ~ ( c )  = h C f i  

tl,(c) = Uq(C) = cy.  
(5.13) 

The remaining four eigenfunctions can he constructed using the symmetry considera- 
tions of [17] and orthogonalizing with the appropriate inner products, 

$s(c) = U d C )  = % C y  

&(c) = U d C )  = d c z  -e:, 

&(c) = (2 - Zci)c ,  

&(c) = (c2 - 2ci)cy 

1 2  

(5.14) 
u,(c) = (2 - $)Cs 

ua(c) = (2 - ;)cy 

where co is the velocity of sound, defined below equation (4.11). The eigenfunctions 
with n = 7,8 are degenerate because of the square symmetry. The eigenvalues i i i  (5.9) 
and (5.11) satisfy the relat,ioti 

(5.15) 

In the last equality we have used that U, = $, + Au,-,, valid for n = 7 and 8 
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To calculate the transport coefficients, we use equation (4.16) with e, = E .  c and 
observe that the j ( c )  is an eigenfnnction of 0 with eigenvalue ws. The currents in the 
remaining Green-Kubo relations for the viscosities in equation (4.18) are eigenfunc- 
tions too. Hence 

(5.16) 

The inner products (. . . I.. .) and susceptibilities, defined in sections 3 and 4, are linear 
combinations of the weights ~ ( 1 )  = k1 and ~(fi) = K,.  To calculate the eigenvalues 
An we first construct the (symmetric) matrix 0n: from the collision rules of [4]. Next, 
we apply the matrix OK to the eigenvectors U, to find the eigenvalues A,. The results 
are listed in table 2. 

Table 2. Eigenvectors and eigenvalues OI the operator Ck, defined as R K ~ , ,  = 
-X,u,. As {U I ,U~ ,U~ ,U I }  are  collisional invariants. their eigenvalues are equal to 
0. The eigenvectors UT and zlg have the same eigenvalue because they are related by 
a symmetry of the lattice. The shorthands fi = f (1 )  = p,/4 and fi = J(d)  = ~ 1 1 4  
have been used. 

n Eigenvector un Eigeiivalue A, 

5.9. Staggered tmnsport coeficients 

As a typical example we  consider the geometric staggered diffusivity (3.2) i n  Boltz- 
mann approximation, 

(5.17) 

with 0 . c = cz + cy. The inverse mat,rix [(-)'" - 1 - 0 1 - I  also possesses square 
symmetry, so that the vector [(-)e'c - 1 - R]-'njr = AKC,  + B K ~ ( c ) .  The unknown 
coefficients A, B can be determined by multiplying both sides of the equation respec- 
tively by c,[(-)~'= - 1 - 01-l and j ( c ) [ ( - ) @ ' .  - 1 - 01-l. After solving for A and E ,  
De in (5.17) follows as 

De = x ; l j ,  ([(-) e.= - 1 - 01-1 - $) k j ,  

(5.18) 
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The staggered diffusivity (3.12) and damping coefficients (4.9) can be calculated sim- 
ilarly. Those involving vector currents are related to the eigenvalue w 8 ,  i.e. 

R Brito and Y H Errist 

(5.19) 

On the other hand the coefficient A, involve tensor currents, so they contain the 
eigenvalues w5 and w6. Calculation gives 

A,, = f v  AiIC = 2v'. (5.20) 

The subtracted currents i n  the Green-Kubo formulas (4.9) for the staggered traus- 
port coefficients guarantee that the inverse matrix (A(@, a) + a)-' exists in the or- 
thogonal complement of the null subspace. For example, if one would try t o  calculate 

in equation (1.4) as derived for FHP model i n  the eight-bit LGCA one would find a 
divergent result. This is because the current c i ,  associated with til, has  a projection 
over a,(c) = 6,&, which is a conserved quantity in the eight-bit model. Thus Ell of 
equation (1.4), when calculated in the eight-bit model, would be divergent. However, 
in FHP models, c; is orthogonal to  all conserved quantities and the matrix 7(@,1)  in 
(5.61, yhen &ng 0~ ,* ,,, O.."I wivoe 2 - WOII A - f i n d  -_ .... _- reqiilt. S i d d y  ?!>e cwrefit ifi hiio 11s 
a subtracted part c ~ c I I ,  proportional to  the conserved staggered @-momentum, which 
makes i t  finite. In the tensor currents of (1.4) no subtracted parts appear because the 
only available staggered invariant cII is a vector. 

The results for the tmnsport coefficients are summarized in table 1. We further 
introduced the notations fl 3 f (1 )  = pJ4, fi 3 f(&) = pr/4 and IC+ = f,(l - f,) 

occurring in the Green-Kubo formulas (3.9), (3.12), (3.15), (4.9), (4.15) and (4.19). 
... :&I. ; - 1 9 Th.. +-I,,...- L-..----+i :n t -hls  1 I;"+- +ha rnr*non~nrl;nrr h-xmrtnr  ;I-\ na W l L l l  ' - I , & .  1 1 L . z  CYLUll l l l  C U L L C l L Y  111 1 , 0 1 . l L L  I ..I"., " . a b  L"LLU"Y"..Y.L.6 "-.--""I ,\1, - 

6. Discussion 

We have studied the presence of spurious modes, both in eight- and nine-bit models. 
We found two kind of invariants: dyitnniic ones, with a high frequency modulation 
( - l )* ,  and geomelrrc ones without. such a modulation. All of them are staggered 
in space according to  a sublattice division, specified by the @-vector. Among the 
dynamic staggered modes of the eight-hit, model we have found the novel phenomena 
of propagating waves. Such waves can occur for a given model only if there exist for 

of vector character. Since t,he @-sublattice division breaks the full cubic symmetry of 
the eight-bit model, the propagation speed for those waves is anisotropic. 

We also derive Green-Kubo expressions for all diffusivities and damping constants, 
associated with the unphysical modes, and evaluate them in Boltzmann approxima- 
tion. Finally, we suggest a systematic met,hod for detecting staggered invariants for 

rh.. -..I.l-b+:n- t ..,_ --,. mn,d rt.,nmpraA ,4snr;+;oa. nfEr.l.r n,,,4 nllr 
u11c D I L l l l r  *"".abb,L= "LllJlY,, L",,oc, ,-U .,,,"b6"\.Y ..~..I.".bI. ".._ -. " .Y._. L... " _.." 
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a given sublattice division characterized by a @-vector. The inethod is a direct con- 
sequence of the equation (A.5) of appendix A, and states that E,, a(cl@,a) 
n ( c , r , t )  is a n  staggered invariant if a (c l@,a)  satisfies the relation 

(-l)o+e'ca(cl@, a) = a(c l@,a )  (6.1) 

and if a(c l@,a)  is a linear combination of the standard collisional invariants. They 

Inspection of table 1 shows that there exist only three independent transport coef- 
ficients D, v and U' in Boltzmann approximation. All remaining transport Coefficients 
are proportional to one of these. The coefficients of proportionality are equilibrium 
susceptibilities. For instance, the damping constants of the staggered waves satisfy 
the equalities Ale = +U and hlle = 2u'. A similar relation holds for the staggered 

gases on square lattices, where standard a,nd st,aggered number densities satisfy a dif- 
fusion equation, Binder and Ernst [7] have given a general argument to show that the 
Green-Kubo formulas for the normal and staggered diffusion coefficients are identi- 
cal for arbitrary densities, using a relat,ionship for the conditional probability in the 
staggered and normal case. Similar relationships for the probabilities of slow and 
fast particles seem to exist here. but we have been unable to show the equality of 
staggered and standard transport coefficients beyond the Boltzmann approximation. 
Furthermore the computer simulations of the FHP model in [ I l l  seem to suggest that 
the relation El = Y breaks down beyond Boltzinanir approximation. 

Finally, a comparison is made with the work of Chopard and Droz [4]. These 
authors define a heat conductivity A, through tlie relation q = -A,VT, where q is 
the heat current and Tb the 'kinetic temperature', defined through the equilibrium 
pressure p = fp?,, with-p = ps + pf .  As the eight-bit model is an ideal Fermi gas, its 
pressure p ( p , T )  IS a complicated function of density and thermodynamic teiiiperalure 
T which differs strongly from their kinetic temperature [22]. Their result for the heat 
conductivity is 

?re for the present mnde! c,  5,,, bi. 

diffusivity <; = I/ in !,he FHP mode!s [In; 141 in Bo!t,amann approximat,ion. !!I Lorentz 

The authors also obtain a Dufour coefficient for single component thermal fluid model. 
According to irreversible thermodynamics, such transport coefficient does not exist in 
single component systems. If one uses the temperature T as defined in (irreversible) 
thermodynamics and statistical mechanics, one can show straightforwardly that the 

to the Green-Kuho formula for the heat conduct,ivity A, in the same model, (when 
interpreted as a single component thermal fluid) through 

n--"- T(..L^ ^---^ "":̂ ..- F-- ,I.- A:m..":,." n :" I Q  ,c\ :- - - , - & - A  
" L F C I I - I . " " "  F " p L S U I 1 V " "  I", U L L C  "III"DI"I. C U C I I I C I ~ I I U  Y U1 Cy"-*.".. ,".I", 1D ,.=,*kc" 

Our result for the heat conductivity in Bolt,zmann approximation follows then from 
equation (5.16) to have a form similar t.o equation ( G . 2 ) ,  with p replaced by ~ ~ l i ~ / x ~ .  

This difference as well a5 the non-vanishing of the Dufour coefficient i n  [4], is caused 
by their use of a temperature concept which is conflict with the thermodynainics aiid 

irreversible thermodynamics [E]. 
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Appendix 

The purpose of the present appendix is to prove the relation A(O,a)a(clO, a) = 0 for 
any spurious staggered invariant (either geometric oi = 0 or dynamic a = 1). Let us  
consider a staggered conserved quantity, defined as: 

~ ( t )  = Ca(cle,~)(-)L1l+B.rn(c,r,t) (A.1) 
7-c 

where a ( @ ,  a) is a linear combination of collisional invariants, satisfying 

By combining (A.2) with the evolution equation (5.1) we obtain: 

C a ( C I O , o i ) ( - ) " ' t e " [ n ( C , T + C , t +  I ) - n ( C , T , t ) ]  = o .  (-4.3) 

Summing this equation over all sites T and using the relation A(t + 1) = A ( t ) ,  we 
obtain the following expression 

C.(.)(-)ul+"".(c,1., t )  [(-1)"+@.' - I]  = 0. ( A . 4 )  
7-c 

It must hold for any configurations of particles {II(C,T,  t ) } .  Hence 

(-)"""a(Cl@, 0) = Q(Cl8,CY). (-4.5) 

This equation has been discussed in section 6 as a method for searching staggered 
invariants. 
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